If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+96t+20=0
a = -16; b = 96; c = +20;
Δ = b2-4ac
Δ = 962-4·(-16)·20
Δ = 10496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10496}=\sqrt{256*41}=\sqrt{256}*\sqrt{41}=16\sqrt{41}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{41}}{2*-16}=\frac{-96-16\sqrt{41}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{41}}{2*-16}=\frac{-96+16\sqrt{41}}{-32} $
| 1=13/3x+4 | | x-(x/100)=50000 | | 5-4x=-6 | | x=13-1/3x+4 | | x/13=1/3x+4 | | (2p+20)+12=p+(40+15) | | 13+x=867 | | x+39=53 | | 6=13+s | | 10y+6-10y=-3 | | 3a+8=2a+56 | | 7=-b+18 | | 0.8x=4.93 | | -3(2=r)=9 | | -(d-9)=23 | | 9/2c=144 | | n-2/3=1/4 | | 0.1d+0.25d(d+8)=4.1 | | 3h=(2-3h)-10 | | 2(6x-5)-8=-22 | | 21=14+s | | x-3.8=8.2 | | 7/2y-1=3 | | 6x+15=24 | | x/4=5+11 | | m™2=7-2m™3 | | 1/4x=5+11 | | 2/3(x-3)+5x=5(x-5) | | 150=-16t^2+100 | | 12^(2x-4)=144 | | 7p–5=3p+3 | | x/3+4/15-x=1/6-7x/10 |